StraceNT — System Call Tracer for Windows NT
(Written by: Pankaj Garq)

O Objective

This document discusses various APl spying/hooking techniques for Windows and
delves into details of IAT patching technique. It then describes the implementation
of StraceNT for Windows. It also gives information about how stack is managed on
x86 and also briefly discusses a minimalist debugger implementation.

1 Introduction

strace is a utility on Linux which can be used to trace all system calls made by a
target process. It comes quite handy at times for debugging problems like deadlock
or tracing the flow of a program. StraceNT is an attempt to provide a similar utility
for Windows. Many debugging tools like Numegas Bounds checker, Identify
software's AppSight are also available on windows which provide system call
tracing to aid debugging but none is as easy to use Strace and most of them require
debug build of application with debug symbols (.pdb files). StraceNT for Windows
is implemented to be a lightweight and easy to use utility with limited functionality
and it is *not* meant to replace commercial tools like Bounds checker. StraceNT is
distributed free of cost for non-commercial as well as commercial use.

2 Requirements

Below are a set of features that are required in StraceNT for it to be usable:

0 StraceNT should be very efficient and it should not slow down the target
application a lot.

0 Itscode should be maintainable and extendable so that spying on new DLLsis
easy.

0 It should be ableto spy onany DLL.

0 It should be able to log information in the same format as strace on Linux i.e.
“api_name(paraml, param2....) = return_value”. This requirement is only to
make Windows version look more like Linux version.

3 Windows System Services

Windows provides its system services through NTOSKRNL.EXE. A user mode
interface for that is wrapped in NTDLL.DLL. This DLL requests system services
from NTOSKRNL using instruction int 2E, which causes a switch from user mode
to kerned mode and then NTOSKRNL executes the requested system service.
However, interface of NTDLL is not public and user mode applications use other
DLLs such as KERNEL32.DLL to access the system services. Due to this reason
there would be little use if we trace API callsto NTDLL because normally people
don't use them directly. Hence | decided to hook API calls to other DLLs such as
KERNEL32, USER32 etc. The interface of these DLLs is public and well
documented. People mostly use these DLLs in their application instead of calling
undocumented NTDLL functions. One more reason to avoid hooking NTDLL APIs

is that they sometime cause recursive hooking. Let’s say we have two DLLsS A and
B, B uses functions from A and our hook function uses functions from B. Now if
we hook functions of A, as soon as our hook function is called, it will call functions
from B and if that function from B calls a function from A, then our hook function
will be called again which will again call function from B and so on till the target
process gets a stack overflow exception and crash. A diagram to depict such
situation is shown below:

s DLL - A
~.| Void* b
A_AllocateMamiint n) s

return malloa(n};

}

Hook Function DLL-B |
void '-"{?'id /
!{-InakFunctlan{] W B_PrintData(char *=s)

e {

B_PrintData{"Holy!"); e
Original_A_Function(} ; A_AllocateMemi{MAX_PATH),
i

In our hook function implementation we rely upon kernel32.dll to do certain
processing. Kernel32.dll imports functions from ntdll.dll, so if we hook ntdll.dll, we
run into chances of circular hooking quite often.

4 Hooking techniques

There are many different ways for APl spying in windows, each having its own
advantages and disadvantages. We will analyze each of these different APl spying
techniques and decide which technique will be best suited for an application like
StraceNT. We will keep the focus on Genera purpose API spying rather than
specific techniques like Winsock hooking or Browser Helper objects which are easy
to inl1plement for specific tasks. Details on various Hooking methods can be found
here".

4.1 Clone DLL

This is one of the easiest methods of API spying. Suppose we want to spy al calls
made by atarget processto PSAPI. We can create our own version of PSAPI that
exports exactly the same functions as exported by PSAPI. If we copy this DLL
into the target processs directory, then instead of original psapi.dll, our version of
psapi.dil will be loaded by the process when it starts. All PSAPI calls will now get
sent to our DLL where we can then do the required processing and call the
original psapi.dll function.

Advantages
o Easy to implement

o Gives complete control over the API including its parameters and return
value

Disadvantages
0 Need to write stubs for all the exported functions of the DLL, even if we
don't want to spy them.
o Difficult to maintain if the DLL's export function changes over time.

4.2 Import Address Table (IAT) patching

This technique is used by Windows loader to load a program in memory for
execution. To understand how this process works we need to dig a little bit
(actually atiny bit) deeper into windows executable file format and how windows
loader executes a program.

Windows stores its executables in a special format called Portable Executable or
PE format. Every PE file contains a special section called Import Address Table
(IAT) to store information about the imported functions from various DLLs. Calls
made to these functions are in the form of 6 byte indirect call instruction e.g. if
notepad.exe uses a function 1sSystemDirectory imported fromaDLL thenthe IAT
of notepad.exe will contain an entry to another table which lists all the the
functions imported from that DLL. One of the entry in this table will contain
address of IsSystemDirectory. All the cals made by notepad.exe to
IsSystemDirectory will be in the form of "call dword ptr
[_imp_IsSystemDirectory]" where _imp_IsSystemDirectory represents the |AT
entry which will contains the actual address of 1sSystemDirectory during the
execution of notepad.exe.

To execute a program (PE file), windows loader allocates memory in Virtual
Address space and maps that PE file in the alocated memory. Each PE file has a
preferred base address, where loader triesto load it. If the preferred address is not
available, then the loader loads it at the available address and performs relocation
on the in-memory copy of the executable. Once relocation process is done, loader
walks through the Import Address Table and loads each DLL one by one. The
process of loading each DLL is exactly same as loading the executable. Once all
the DLLs are loaded, loader walks through the IAT of each loaded module (exe
and dll) and performs an address fix-up to point to the actual in-memory address
of the imported function.

To hook IsSystemDirectory in notepad.exe, all we need to do is replace the IAT
entry which represents | sSystemDirectory with address of the hook function. This
will cause all calls made by notepad.exe to 1sSystemDirectory to be routed to the
hook function. The hook function then can chose to pass control to original
function or take some other action. More information on this topic can be found in
Matt Pietrek’s arcticle’.

Advantages

0 Need to only implement stubs for APIsthat needsto be patched
o |AT patching is standard mechanism in windows and also used by
Windows program loader.

Disadvantages
0 Have to deal with issues on how to execute our hook functions in the
context of the target process.
0 Implementation is relatively complex.

4.3 Minimalist debugger

In this technique the spying application can act as a debugger and insert x86 "int
3" as the first instruction for all the APIs that we wish to spy on. As soon as this
instruction is hit, a STATUS BREAKPOINT exception will occur and in our
spying application, we can do required processing like logging API information,
generating call stack etc (much like a full fledged debugger).

Advantages
0 Relatively easier to implement than IAT patching.
0 It is more maintainable because the STATUS BREAKPOINT exception
handler in the hooking application can handle all the APIs.
0 We can easily improve it to take advantage if the application is a debug
build application and record much more information than just function
arguments and return value.

Disadvantages
0 Windows exception handling is too slow which makes it non-scalable
o0 Catching return value of an APl would be difficult

5 Implementation

The requirements for StraceNT and our analysis of APl spying techniques above
shows |AT patching as the most suited solution for StraceNT. It is one of the fastest
solutions and it does not require writing stubs for all the functions of the DLL even if
we want to spy only few of them. Debugger method will not be used due to slowness
of exception handling even though it is easy to implement and more maintainable
than IAT patching. We will now discuss the implementation of StraceNT by
disseminating various pieces:

5.1 Import Address Table (IAT) Patching

5.1.1 Processes and modules

Before we go further into the details of 1AT patching, it will be helpful to agree
upon few terms here:
0 Process—isarunning instance of an executable on Windows.
0 Module - is the active instance of a PE binary inside a process. To
understand this better lets take example of a hypothetical windows
executable called “hypo.exe’. This executable (hypo.exe) uses functions

imported from kernel32.dll. To execute this executable, window loads
hypo.exe in memory and then load kernel32.dll because hypo.exe is
dependent upon kernel32.dIl. Thus we have two modules for the process
hypo.exe which are “hypo.exe” and “kernel32.dl1”.

5.1.2 Traversing IAT of a module

Each module inside a processis loaded at a distinct address. We can obtain the list
and address of each loaded modules inside a process using PSAPI functions such
as EnumProcessModules (documented in MSDN). Once we obtain the address of
amodule inside a process, we can eadly find the AT of that module. The sample
code below shows how to find the IAT of amodule using its loaded base address:

voi d
Pat chivbdul e(
LPVO D nodul eBaseAddr ess)

{
Pl MAGE_DOS_HEADER pl DH = (Pl MAGE_DOS_HEADER) nodul eBaseAd dr ess;

Pl MAGE_NT_HEADERS pl NTH =
(PI MAGE_NT_HEADERS)
(rmodul eBaseAddr ess + pl DH->e_| fanew);

DWORD dw nport Tabl eOf fset =
pl NTH- >Opt i onal Header . Dat aDi rect ory
[1 MAGE_DI RECTORY_ENTRY_I MPORT] . Vi rt ual Addr ess;

Pl MAGE_| MPORT_DESCRI PTOR pl I D =
(PI MAGE_| MPORT_DESCRI PTOR)
(rmodul eBaseAddr ess + dw nport Tabl eO f set) ;

/1
/1 At this point plID points to an array of Inport Address Table, each
/1 entry of the array is specific to a particular DLL. The code bel ow
/1 shows how we can traverse each array and find out which functions
/1 are inported fromwhich DLL.
/1
while (plID->FirstThunk '= 0 &&

pl I D->COri gi nal Fi rst Thunk !'= 0)
{

/1
/1 DLL nane from which functions are inported
/1
LPSTR pszModul eNane =
(LPSTR) (nodul eBaseAddress + pl | D->Nane);

/1
/1 First thunk points to | MAGE THUNK DATA
/1
Pl MAGE_THUNK_DATA pl TDA = (PI MAGE_THUNK_DATA)
(rmodul eBaseAddr ess + (DWORD) pl | D- >Fi r st Thunk) ;

/1
/1 Oiginal FirstThunk points to | MAGE | MPORT_BY _NAME array but
/!l due to its identical structure to | MAGE THUNK DATA, we can use

/1 | MAGE_THUNK _DATA object to dereference it.
/1
Pl MAGE_THUNK_DATA pl | NA = (PI MAGE_THUNK_DATA)
(rmodul eBaseAddr ess + (DWORD) pl | D->Ori gi nal Fi r st Thunk) ;

// While Function address is not NULL
whil e (pl TDA->ul. Ordinal != 0)

/1 Ordinal and Function are a part of union ul
/1 pFunction gives the address of function which
/1 this I AT entry correspond too.

PVA D pFunction = (PVA D) pl TDA->ul. Functi on;

/1

/1 If the function is Inported by nane

/1

if (!'1MAGE_SNAP_BY_ORDI NAL(pl I NA->ul. Ordinal))

Pl MAGE_| MPORT_BY_NAME pl I N = (Pl MAGE | MPORT_BY_NAME)
(rmodul eBaseAddr ess + pl I NA->ul. AddressOf Dat a) ;

/1 plIN->Nane - points to nane of the function

HookApi (pl TDA, (LPSTR) pl | N- >Nane) ;

}
pl TDA++;
pl | NA++;
}
pl | D++;
}
}

Extensive details of the code above are beyond the scope of our current discussion
but more information on this topic can be found in PE tutorial on MSDN®.

5.1.3 Patching an IAT entry

The next thing we need to do is to patch the IAT table entries with our hook
function address so that all patched function calls are redirected to our hook
function instead. To patch an IAT entry, we will first make the memory location
of IAT entry writable and then simply replace the Function address stored inside
that IAT entry with our hook function address. The code below shows how to do
this:.

voi d
Pat chl ATEnt r y(
Pl MAGE_THUNK_DATA pl TDA,
LPVO D nmyHookFunct i on)

{
DWORD dwd dPr ot ect ;

DWORD dwTenp;

/1 Make the page witable

if (Virtual Protect(
&pl TDA- >ul. Functi on,
si zeof (DWORD) ,
PAGE_READWRI TE,
&dwd dProt ect))

/1 Point the I AT entry to our hook function
pl TDA- >ul. Functi on = (DWORD) nyHookFuncti on;

Vi rtual Protect (
&pl TDA- >ul. Functi on,
si zeof (DWORD) ,
dwd dPr ot ect,
&dwTenp) ;

5.1.4 Implementing Hook function

We discussed how to find and patch an IAT entry and redirect all patched
functions to our hook function. Now we will discuss the design of our generic
hook function. Recall from the “Requirements’ section that to make StraceNT
useful and maintainable, we need to write single (or generic) hook function for all
the functions. Seems triviad? Think again! The biggest problem with
implementing a generic hook functions is that if we don't know how many
arguments the original function expect, then how can our hook function pass
control to the origina function (without messing the stack up)? The other
problem has to do with different calling conventions’. How to handle different
function with different calling conventions like __ fastcall, __ stdcall or __cdecl?
We devised a unique solution to solve this problem but before we delve into the
details of that, we need to understand how stack is managed in x86 architecture.

5.1.4.1 Stack management on x86

The diagram below shows the execution of a piece of code and the state of stack
as the program is executing. To make things easier to understand, | drew the
stack on both side of the code. When we are calling functions, data is getting
pushed on the stack and when we are returning from functions, data is getting
popped off the stack. Also note that on x86 architecture, stack grows from top to
bottom so as we push something on the stack, new items appear at the bottom.

STACK

4+— 16 bytes——

+—32 bytes—p

System Call Tracer

data from previous

copyright © www.intellectualheaven.com

data on stack for
current function

10h

Return Address
0010101F

ebp

sub esp, 10h causes
16 bytes to ba
allocated on the
stack

0101014 MOV eax, edx
00101015 FUSH 10k
00101014 PUSH eax
101018 CALL sub 1
CMO10MF XOR 28X, 8dx
Sub_1:
M02F10 PUSH ebp
0102F11 MOy ebp, esp
M102F13 SUB esp, 10h
A 00102F19 CALL subh 2
COOFF1F ADD esp, 10h
MMOFF23 POP ebp
0102F24 ret
Sub 2
MOFFFO PUSH ebp
O010FFF1 MOV ebp, esp
O010FFF3 sUB esp, 20h
—coda for function 2—
D010FFFY ADD esp, 20h
MMOFFFF POP ebp
0110000 ret

..
H..
.,
"
L
‘F’:{x

Return Address
00102F1F

data from previous
functions

data on stack for
current function

10h

EEx

Return Address
CH0IMF

ebp

,
b
,
x'\.

16 bytes allocated
an stack earlier
using sub asp, 10h

Return Address
Q0102F1F

+— 16 byles—»

ebp

sub asp, 20h causes
32 bytes to be
allocated on the
stack

1 = Shows the initial stack at the random position in a program execution
2 — Stack after two PUSH statements are executed
3 — Stack after “CALL sub_17 is executed, which pushed the next instruction

address on the stack and transferred confrol o sub_1 entry.

4 — Stack after PUSH and SUB statements are exacuted which pushed ebp and 16

bytes on stack

5 — Stack after “CALL sub_27 is executed, which pushed the next instruction

address on the stack and transferred control to sub_2 entry.

6 — Stack after PUSH and SUB statemenis are executed which pushed sbp and 32

bytes on stack

T = Stack ADD and POP instructions as shown in figure above ane executed. At
this point {if the function did not mess the stack up), the first entry on the stack is

Return Address (00102F1F)

8 — Stack when rel statement inside sub 2 s executed. This causes the return
address from the stack o be popped off and control is transferred 1o the returmn

address.

9 — Stack ADD and POP instructions as shown in figure above are executed. At
this point (if the function did not mess the stack up), the first entry on the stack is

Return Address (0010101F)

10 — Stack when rat slatement inside sub_1 is executed. This causes the return
address from the stack to be popped off and control is transfemed o the return

address.

Page 8 of 18

STACK

5.1.4.2 Hook Function Design

At this point we have enough background knowledge to design our hook
function. | decided to implement the hook function as a naked® function because
of few advantages discussed further in this article. The IAT entry of the DLL to
patch is replaced with the address of in-memory executable instructions as

shown below:

voi d
Hook Api (

Pl MAGE_THUNK_DATA pl TDA

LPSTR i NApi Narre)
{
/1
/1 plTDA - is the Inmage thunk data entry for the I AT entry

/1 that we want to patch. The entry is | ocated as shown
/1 in section 5.1.2 i.e. Traversing the | AT Table
/1

/1

/1 inApi Name - Contains the name of the function we are
/1 going to hook

/1

/1
/1 Al'locate nenory in the process for executable instructions
/1 ioPatchCode is the address with which the AT entry will be
/'l repl aced.
/1
unsi gned char *ioPat chCode =
Vi rtual Al l oc(NULL,

14,

MEM_COW T,

PAGE_EXECUTE_READVRI TE)

i f (ioPatchCode)
{
/1
/1 Store the APl nanme and its original function address
/1 in a global array.
/1
/1 Tmplementation of InsertNewAPI Name is left to reader as an
/'l exercise
/1
DWORD api I ndex = I nsertNewAPl Nanme(pl TDA- >ul. Functi on, i nApi Nane);

/1

/1 The code belowis in 6-byte indirect CALL instruction
/1 format. Once this code is executed, apilndex is

/1 pushed on the stack as return address and control is
/1 transferred to HookFunctionEntry

/1

i oPat chCode[0] OxFF

i oPat chCode[1] 0x15;
mencpy(& oPat chCode[2], (DWORD) & oPat chCode[10]) ;
mencpy(& oPat chCode[6], (DWORD) api | ndex);

mencpy(& oPat chCode[10], (DWORD) &HookFuncti onEntry);

/1

/1 The function belowis inplemented in section 5.1.3
/1 i.e. Patching an I AT entry

/1

Pat chl ATEnt ry(pl TDA, i oPat chCode);

Function HookFuncti onEnt ry is implemented as a naked function to force the
compiler to *not* generate function prolog and epilog. The usua function
prolog and epilog, generated by the compiler, makes it hard for a function to
manipulate the stack but with naked function we can do so. The actual work is
done by HookFunct i onProcessi ng and HookFunct i onEnt ry isused so that we
can manipulate the stack in whatever way we want.

__decl spec (naked)

voi d

HookFuncti onEntry()

{

/1

/1 W only need to preserve Callee saved registers

/1 which are ebx, esi and edi, So i can safely nodify
/] eax, ecx and edx here.

/1

__asm
{

push ebx

pushf

pushf

nov ebx, esp

add ebx, 8

push edx

push ecx

push ebx

call HookFuncti onProcessing

popf

popf

pop ebx

Pop of f as many bytes of stack now
as popped off by original API

add esp, edx

ret
}
}

HookFunctionEntry first saves the required registers on the stack and then
move the value of stack pointer ESP to EBX and subtract 8 from EBX to
compensate for the registers we saved on stack. This value of EBX will be used
to access the original stack for the patched function. ECX and EDX are passed

as arguments so that this hook function can hook both C++ and __ fastcall
functions. After pushing ECX and EDX on sack, it cdls
HookFunct i onProcessi ng which does actual hook processing. On return,
HookFunct i onProcessi ng sets the number of bytes original function popped
off from the stack in EDX. We restore our saved registers and then pop off the
number of bytes specified in EDX off the stack to make sure that we removed
exactly as many items off the stack as original APl would have without any
patching. This proper stack manipulation is *most important* to make this
hooking work without causing a crash. Once stack is fixed, we simply return
and calling process has no idea that the function it called was hooked.

HookFunct i onProcessing does the actual processing like logging API
information, calling original API, then recording its return value. The code
below shows how it is done:

typedef PVO D (_stdcall *PFNORI G NAL)(void);

voi d
__stdcal l
HookFunct i onPr ocessi ng(
DWORD **ppSt ackPos,
DWORD i nECX,
DWORD i nEDX)
{
/1
/1 Initially this stack |ocation contains apilndex
/1 that is pushed by the conpiler, when the instruction

/1 call is executed by the conpiler for this function
/1

DWORD api | ndex = **ppSt ackPos;

/1

/'l ppStackPos al so points to the return address

/1 which we will replace with original APl that we patched.
/1

DWORD *pRet ur nAddr ess = (DWORD *) ppSt ackPos;

/1

/1l Original return address is the address where the original
/1 APl woul d have returned.

/1

DWORD *pOri gi nal Ret Addr = (DWORD *) (ppSt ackPos + 1);

/1
/1 pFirstParam points to first argument for original API
/1

DWORD * pFi r st Par am (DWORD *) (ppSt ackPos + 2);

LPVA D val ueRet urn = NULL;
DWORD err or Code = 0;
char szStr[1024];

LPCSTR str = NULL;

/1

/1l GetOrigFuncAddr - shall retrive original function address

/1 that we patched for the apilndex fromthe gl obal array.

/1

/1 Its inplenentation is left for reader as an exerci se.

/1

PFNORI G NAL pOr gFunc = (PFNCORI G NAL) Get Ori gFuncAddr (api | ndex) ;

/1

/1 used to manage stack
/1

DWORD dwESP

DWORD dwNewESP

DWORD dwWESPDi f f;

/1

/1 Log APl Paraneters |nformation

/1

/1 Get APl Name - Shall retrive the APl nane from gl obal array
/1 Its inplenentation is left for reader as an exerci se.

/1

str = CGet APl Name(api | ndex);

sprintf(szStr,
"$[Twl] 9%B(, &, &, W&, ...) ",
Get CQurrent Threadl d(),
str,

*pFi r st Par am

*(pFi rst Paramtl),
*(pFi r st Paramt2) ,
*(pFirst Paramt3)) ;

/1

/1 Print APl information in a debugger
/1

Qut put DebugSt ri ngA(szStr);

/1

/1 Note:

/1 What we do here is kind of tricky. W make space for 100 bytes
/1 i.e. 25 paranters on stack. After that we copy the original

/1 100 bytes fromthe original APl stack to this |ocation and cal
/1l the original API. After the original APl return, we see the

/1 difference in esp to determ ne, how nany bytes it popped off
/'l because we need to pop off that many bytes once we return from
/1 ihiPatchProl og which was our detour function for original API
/1

/1 \\rning!!!

/1 I'f a function takes nore than 25 paraneters, we are screwed.
/1

__asm
{
pushad
nov dwESP, esp
sub esp, 100
nov dwNewESP, esp

mencpy((PVA D) dwNeweSP, (PVQA D) pFi r st Param 100) ;

/1
/1 for C++ functions we need to restore ecx because it contains
/1 this pointer.
/1l for _ fastcall functions we need to restore ecx and edx because
/1 they contain first and second argunent respectively
/1
__asm
{
nov ecx, i NECX
nov edx, i nEDX

}

val ueReturn = (*pOrgFunc) () ;

/1

/1 At this point, esp is nessed up because

/1 original function m ght have renoved only

/1 partial nunber of paraneters. W need to find
/1 our how many did it remove

/1

__asm

{
nov dwNewESP, esp
nov esp, dwESP
popad

}

/1

/1 W always need to fix the error code because
/1 many times its reset due to the APl calls that
/1l we make. So save error code here.

/1

errorCode = CetlLastError ();

/1

/1 Log APl Return value Information
/1

sprintf(szStr,

"$= w\n",
val ueRet urn);

Qut put DebugSt ri ngA(szStr);

/1

/1 This is the size that we need to pop when we return
/'l because this is the stack difference, when we called
/1 the original API. This means that we will pop off

/1 same nunber of bytes as done by original APlI, once we
/1 return from HookFunctionEntry

/1

dweSPDi ff = dwNewESP - (dweSP - 100);

/1
/1 The address where HookFunctionEntry will return to
/1 should point to the original return address of original API

/] so

that once HookFunctionEntry returns, normal code execution

// can conti nue

/1

*(pReturnAddress + 1 + (dweSPDiff / 4)) = *pOrigi nal Ret Addr;

/1

/1 Add 4 to renove extra return address (apilndex) stored by call to
/1 HookFunctionEntry

/1

dwESPDi f f += 4;

/1

/] Restore error code here

/1

Set Last Error (error Code) ;

/1 Set the registers for use in HookFunctionEntry

__asm

{

}

nov eax, valueReturn
nov edx, dwESPD ff

return;

}

5.2 Executing code inside another process

bool
W NAPI
I nj ect

Y ou can notice from above that the patching code and hook function should be in
target process's address space for them to work. So how do we insert this code in
target process's address space and make the target process execute this code? A
well known solution to this problem is to implement the code in a DLL and to
load the DLL in target process' s address space by using documented Win32 API
CreateRemoteT hread. CreateRemoteThread as the name suggest is used to create
athread in another process. A thread function has same prototype as LoadLibrary,
so we can call CreateRemoteThread with LoadLibrary’s address and it will cause
LoadLibrary call to be executed in target process's context. Thisway LoadLibrary
can load our patching DLL in target process. Once the DLL isloaded, its DIIMain
will get called with parameter DLL_PROCESS ATTACH and at that point the
DLL can patch all the required AT entries of target process. We already showed
you the code to patch IAT entries; the code to load the DLL is shown below:

DI (
HANDL E hProcess,
const wchar _t* i nDI | Pat h)

HMODULE hModul e = Get Mbdul eHandl eA(" kernel 32.dl1");

if (hMbdul e == NULL)
{

}

goto funcExit;

LPVO D | oadLi braryW = Get ProcAddr ess(
hModul e,
"LoadLi braryW);

i f (1 oadLibraryW == NULL)

{

goto funcExit;
}
LPVO D pl nj ecti onDat a;
wchar _t szDl | Pat h] MAX_PATH] ;
SIZET not Used;
bool funcResult = fal se;
/1

/1 Al'locate the nmenory inside target process
/1 for DLL full path

/1
pl njectionData = Virtual Al l ocEx(
hPr ocess,
NULL,
si zeof (szDl | Pat h),
MEM_COWM T,

PAGE_READWRI TE) ;
if (plnjectionData == NULL)

goto funcExit;
}

wescpy(szD | Path, inD | Path);

Wit eProcessMenory(
hPr ocess,
pl nj ecti onDat a,
szDl | Pat h,
si zeof (szD | Pat h),
¬ Used) ;

DWORD t hreadld = O;

/1

/1 The code below will cause following to get executed
/1 in target process

/1

/1 (*1 oadLi braryW (pl nj ecti onDat a) ;

/1

/1 This will |oad our patching DLL in target process
/1
HANDLE hThread = Creat eRenot eThr ead(

hPr ocess,

Ol

0

(LPTHREAD_START_RQUTI NE) | oadLi br aryWw
pl nj ecti onDat a,
Ol

&t hreadl d) ;
if (hThread)

/] Set the return status
funcResult = true;

}

funcExit:
return funcResult;
}

5.3 Logging interface

So far we have seen how to patch IAT entries, implementation of our hook
function and how to load our patching DLL in target process s address space. The
only remaining part of the problem is, how to log the information that our hook
function is sending. There can be numerous ways to do this. We can use shared
memory to transfer the information, or we can use any |PC mechanism to do the
same. We chose a smpler approach, which is to call OutputDebugString from
hook function to log information. StraceNT can now act as a debugger and attach
to the target process and print the API logging information coming from hook
function. This approach is easy to implement and has another advantage that if a
real debugger is attached to target process, then the entire APl logging
information will be displayed in that too. There is a very good sample for writing
a minimum debugger in MSDN but for completeness sake, | am listing the code
for my implementation below:

voi d
At t achDebugger (
DWORD processl d)

{

HANDLE ghProcess;

int threadCount = O;

bool processinfected = fal se;

i f (!DebugActiveProcess(processld))
{

}
DebugSet ProcessKi | | OnExi t (FALSE) ;

goto funcExit;

DEBUG EVENT debugEvent;
DWORD dwCont i nueSt at us = DBG_CONTI NUE;

bool keepAlive = true;
whi | e(keepAlive)

Wi t For DebugEvent (&debugEvent, | NFI NI TE);
dwCont i nueSt at us = DBG_CONTI NUE;

swi tch (debugEvent. dwbDebugEvent Code)

case EXCEPTI ON_DEBUG EVENT:

{
switch
(debugEvent . u. Excepti on. Excepti onRecor d. Except i onCode)
{
case EXCEPTI ON_BREAKPQO NT:
{
br eak;
}
defaul t:
{
/1
/1 If this was a second chance excepti on,
/1 it will cause the process to termnate
/1
dwCont i nueSt at us =
DBG_EXCEPTI ON_NOT_HANDLED;
br eak;
}
}
br eak;
}

case CREATE_PROCESS DEBUG EVENT:

if (ghProcess == NULL)

{
ghProcess =
debugEvent . u. Cr eat ePr ocessl nf 0. hPr ocess;
}
br eak;

}
case EXI T_PROCESS DEBUG EVENT:

{
keepAlive = fal se;
br eak;
}
case QUTPUT_DEBUG STRI NG_EVENT:
{
DWORD cbRead = O0;
ReadPr ocessMenor y(
ghPr ocess,
debugEvent . u. DebugSt ri ng. | pDebugSt ri ngDat a,
gDbgSt ri ng,
debugEvent . u. DebugSt ri ng. nDebugSt ri ngLengt h,
&cbRead) ;
i f (debugEvent. u. DebugStri ng. f Uni code)
{
wprintf(L"%\s", gDbgString);
}
el se
{

printf("%", gDbgString);

}

br eak;

}

Cont i nueDebugEvent (debugEvent . dwPr ocessl d,
debugEvent . dwThr eadl d,
dwCont i nueSt at us) ;

funcExit:
return;

}

6 Recap

In summary, you need to do following to implement a full blown solution with API
hooking techniques:
0 Implement a DLL which can patch its process's IAT entries and which also
implements a hook function for the patched IAT entries (or functions).
0 Implement amodule to inject this DLL into address space of target process.
0 Implement a process which should first inject the DLL into target process and
then attach to the target process as a debugger to log the API information.
You may skip attaching to the target process as a debugger and instead use
some other |PC mechanism to log the API information.

Conclusion

|AT Patching technique for API hooking though not new; is still alot of fun to play
with. It is a fun thing to learn and once you develop a solution using this technique,
you will sure find that you have a better understanding of many concepts in
windows. There has been many implementations using this technique, but none to
my knowledge provide as flexible APl hooking as provided by StraceNT. Its ability
to hook any API with any calling convention makes it unique and powerful to trace
APIsfromany DLL.

8 Reference

1. http://www.internals.comvarticles/apispy/apispy.htm

2. http://www.iecc.convlinker/linker07.html

3. Learn System Level Win32 Coding Techniques by Writing an APl Spy
Program by Matt Pietrek published in December 1994 issue of MSJ.

4. http://msdn.microsoft.conVlibrary/default.asp?url=/library/en-
us/dndebug/html/msdn_peeringpe.asp

5. http://weblogs.asp.net/oldnewthing/archive/2004/01/08/48616.aspx

6. http://msdn.microsoft.conVlibrary/default.asp?url=/library/en-
us/veeelng/htm/msmod_25.asp

